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Recessive Inheritance of Obesity in Familial Non–Insulin-Dependent
Diabetes Mellitus, and Lack of Linkage to Nine Candidate Genes
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Summary obesity, from genes that predispose only for obesity, or
from genes of both types.Segregation analysis of body-mass index (BMI) sup-

Prader-Willi syndrome is one known genetic cause ofported recessive inheritance of obesity, in pedigrees as-
obesity; the syndrome also includes short stature, smallcertained through siblings with non–insulin dependent
hands and feet, a characteristic face, mental deficiency,diabetes mellitus (NIDDM). BMI was estimated as 39
hypotonia, and hypogonadism (Donaldson et al. 1994).kg/m2 for those subjects homozygous at the inferred
Most patients have a deletion on the long arm of thelocus. Two-locus segregation analysis provided weak
paternally inherited chromosome 15. The deletion un-support for a second recessive locus, with BMI estimated
doubtedly encompasses multiple genes, each of which isas 32 kg/m2 for homozygotes. NIDDM prevalence was
responsible for a subset of the component phenotypesincreased among those subjects presumed to be homozy-
of the syndrome. A mutation in a single gene withingous at either locus. Using both parametric and non-
the deleted region may produce nonsyndromal obesity.parametric methods, we found no evidence of linkage
However, such a gene has yet to be identified.of obesity to any of nine candidate genes/regions, includ-

Although the genes that underlie human obesity haveing the Prader-Willi chromosomal region (PWS), the hu-
yet to be identified, the human homologues of mouseman homologue of the mouse agouti gene (ASP), and
obesity genes are reasonable candidates. A dominantthe genes for leptin (OB), the leptin receptor (OBR/DB),
mutation in the agouti gene produces obesity and diabe-the b3-adrenergic receptor (ADRB3), lipoprotein lipase
tes, as well as a yellow coat color, compared with the(LPL), hepatic lipase (LIPC), glycogen synthase (GYS),
wild-type phenotype of banded black and yellow hairsand tumor necrosis factor a (TNFA).
(Yen et al. 1994). The ob and db genes code for leptin
and the leptin receptor, respectively; a recessive muta-

Introduction tion in either produces obesity and strain-specific diabe-
tes, in rodents (Zhang et al. 1994; Lee et al. 1996).Obesity is one of the strongest risk factors for non–

Other obesity candidate genes play a role in lipolysis,insulin dependent diabetes mellitus (NIDDM) (Hansen
glycogen synthesis, and insulin resistance. The b3-adren-1995). In rodents, obesity and diabetes co-occur as
ergic receptor is thought to affect fatty-acid mobilizationpleiotropic effects of several genetic defects (Bouchard
(Emorine et al. 1994). Lipoprotein lipase (Eckel 1989)1995). Likewise, in humans, obesity and NIDDM may
and hepatic triglyceride lipase are thought to provideco-occur as pleiotropic effects of a single gene. On the
fatty acid for storage in adipose tissue. Glycogen syn-other hand, lean individuals also develop NIDDM, in-
thase is the rate-limiting insulin-sensing enzyme in glu-cluding lean relatives of obese NIDDM patients. Conse-
cose storage (Felber et al. 1993). Tumor necrosis factorquently, another possibility is that obesity, regardless
a plays a role in the insulin resistance of obesity and ofof cause, increases the risk of NIDDM in susceptible
NIDDM (Hotamisligil and Spiegelman 1994).individuals. Therefore, the inherited obesity expressed

in pedigrees selected through cases of NIDDM may re- In this study, we used segregation analysis to test for
sult from genes that predispose for both NIDDM and major-locus inheritance of obesity in 42 pedigrees ascer-

tained through siblings with NIDDM. Then, we tested
for linkage between obesity and nine obesity candidate
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Subjects and Methods alleles in Hardy-Weinberg equilibrium. The polygenic
and random environmental components were assumed

We ascertained 42 pedigrees that met our criteria of to be normally distributed within genotypes. When the
at least two siblings with onset of NIDDM before age model included polygenes and one or more major loci,
65 years and at most one parent known to have the likelihood was approximated (Hasstedt 1993).
NIDDM. First-, second-, and third-degree relatives of The parameters of the model included the total mean
the probands were studied when available. All sample (m), the total standard deviation (s), the frequency of
members were of northern European ancestry. We mea- the allele determining high BMI at locus L (qL), the dom-
sured height and weight and performed a standard 2-h, inance at locus L (dL), the displacement at locus L (tL),
75-g oral glucose-tolerance test with fasting and 1-h polygenic heritability (h2), and parent-to-offspring
insulin levels. We computed the body-mass index (BMI) transmission probabilities (t1 , t2 , and t3) for the three
as weight divided by height squared. Glucose level was genotypes at one locus (Boyle and Elston 1979; Lalouel
measured by a standard glucose oxidase assay; one of et al. 1983). Displacement is the difference, in within-
two laboratories measured insulin levels by double-anti- genotype SDs, between the means for the two types of
body radioimmunoassay. BMI and fasting, 1-h, and 2- homozygotes. Dominance is the difference between the
h glucose levels were age- and gender-adjusted by use mean for heterozygotes and the mean for homozygotes,
of regression; fasting and 1-h insulin levels were adjusted for low BMI relative to the displacement. We assumed
for age, gender, and the testing laboratory, by use of additivity of displacement across loci; that is, for a two-
regression. BMI measurements were available for a total locus model, the displacement for both loci together
of 616 individuals, within the range of 1–37 individuals equaled the sum of the displacement at locus 1 and at
per pedigree. Each participant in the study gave in- locus 2. The polygenic heritability is the proportion of
formed consent. This study was approved by the Institu- the variance within major-locus genotypes, owing to
tional Review Board of the University of Utah Health polygenic inheritance. Mendelian inheritance specifies t1

Sciences Center, Salt Lake City. Å 1, t2 Å .5, and t3 Å 0.
Microsatellite markers were amplified from 60 ng of We inferred major loci sequentially. We first tested for

DNA, by use of g[32P]-labeled primer. Autoradiographs one major locus by specifying the most general model,
were read by two individuals. Consistency of scoring through the parameters m, s, q1 , d1 , t1 , h2, t1 , t2 , and
was maintained by the running of control samples across t3 . When one locus was inferred, we tested for a second
all gels. Allele frequencies were estimated by use of a locus by specifying the most general model, through the
sample of Ç100 unrelated individuals, most of whom parameters m, s, q1 , t1 , q2 , d2 , t2 , h2, t1 , t2 , and t3;
are spouses of pedigree members. by fixing d1 to its estimate in the one-locus model; by

We used likelihood analysis to test for major-locus assuming Mendelian transmission at locus 1; and by
inheritance of high levels of BMI. We computed the applying t1 , t2 , and t3 to locus 2. When two loci were
likelihoods of the genetic models (Elston and Stewart inferred, we tested for a third locus by specifying the
1971), using PAP (Hasstedt 1994), and obtained the most general model, through the parameters m, s, q1 ,
maxima, using NPSOL (Gill et al. 1986). We corrected t1 , q2 , t2 , q3 , d3 , t3 , h2, t1 , t2 , and t3; by fixing d1 and
for the ascertainment of each pedigree, through a sib d2 to their estimates in the two-locus model; by assuming
pair with NIDDM and through a parent not known to Mendelian transmission at locus 1 and at locus 2; and
have NIDDM, by dividing each pedigree likelihood by by applying t1 , t2 , and t3 to locus 3. The test of no
the likelihood of the measured BMI for these individuals major locus L compared the likelihood of qL Å 0 to the
(Young et al. 1988). We tested significance using x2 sta- likelihood of qL estimated, with the restriction that t1

tistics. Under certain conditions, the natural logarithm Å 1, t2 Å .5, and t3 Å 0. For the first locus, this test
of the ratio of the likelihood of a submodel relative to compared the likelihood of a one-locus model to the
the likelihood of a general model, multiplied by 02, likelihood of a polygenic model; for the second locus,
approximated a x2 distribution. The x2 test had df equal this test compared the likelihood of a two-locus model
to the number of parameters restricted when the submo- to the likelihood of a one-locus model; and for the third
del was specified from the general model. locus, this test compared the likelihood of a three-locus

The genetic model used in the analysis specified each model to the likelihood of a two-locus model. The tests
phenotype as the sum of independent effects attributed of Mendelian transmission and of environmental non-
to the segregation of alleles at major loci, the transmis- transmission, at locus L, compared the likelihood of t1

sion of polygenes, and random factors specific to the Å 1, t2 Å .5, and t3 Å 0 and the likelihood of 1
individual. This analysis extended to multiple loci the 0 qL Å t1 Å t2 Å t3 , respectively, with the likelihood
standard mixed model that includes a single major locus of estimated t1 , t2 , and t3 . We inferred major-locus
and polygenes (Elston and Stewart 1971; Morton and inheritance when we rejected the hypotheses of no major

locus and of environmental nontransmission but did notMacLean 1974). We assumed each major locus had two
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reject Mendelian transmission. The tests of recessivity statistic indicates that the estimated transmission proba-
bilities of t1 Å .908 { .043, t2 Å .410 { .073, and t3and of dominance, at locus L, compared the likelihood

of dL Å 0 and the likelihood of dL Å 1, respectively, Å .000 did not differ significantly from the Mendelian
probabilities of 1, .5, and 0, respectively. We inferredwith the likelihood of dL estimated, with the restriction

that t1 Å 1, t2 Å .5, and t3 Å 0. recessive inheritance by rejecting dominance (x2
(1)

Å 46.47; P õ .0001) and by not rejecting recessivityWe used genotypic probability estimators (GPEs)
(Hasstedt and Moll 1989) to estimate the effects of the (x2

(1) Å 2.01; P ú .05). We designated this locus, with
displacement estimated as 3.23 SDs, the ‘‘extreme-obe-BMI major loci on other variables. To use GPEs, one

partially assigns a genotype to each individual, using a sity locus.’’
Allowing for the extreme-obesity locus, we obtainedgenotypic probability pij—that is, the probability that

person i has genotype j—which equals the relative like- evidence consistent with the existence of an additional
locus with a more moderate effect, by rejecting the hy-lihood of the genetic model conditioning on person i

having genotype j. The parameters of the model were pothesis of no second locus (x2
(3) Å 32.74; P õ .0001),

while also not rejecting Mendelian transmission (x2
(3)fixed at their maximum-likelihood estimates for the in-

ferred genetic model. We then estimated the number of Å 1.26; P ú .05), although we failed to reject environ-
mental nontransmission (x2

(3) Å 5.00; P Å .17). Theindividuals with each genotype, within subgroups of
the sample, as nj Å Sipij and the genotypic mean of transmission probabilities were estimated as t1 Å .893

{ .093, t2 Å .541 { .080, and t3 Å .034 { .040. Wevariable x as m̂j Å Sipij(xi /nj), where xi equals the value
of variable x measured for person i and where the sum- inferred recessive inheritance by rejecting dominance

(x2
(1) Å 11.43; P õ .001) and by not rejecting recessivitymation is over all members of the subgroup. The esti-

mates should be interpreted with caution; the assump- (x2
(1) Å 0.00; P ú .05). We designated this locus, with

displacement estimated as 2.20 SDs, the ‘‘moderate-obe-tion of independence is violated if residual genetic
variation is present. sity locus.’’

We retested for the extreme-obesity locus, whileWe tested for linkage to each of the obesity candidate
genes, using the pseudomultipoint procedure in FAST- allowing for a moderate-obesity locus. Again, we re-

jected environmental nontransmission (x2
(3) Å 19.46; PMAP (Curtis and Gurling 1993) on single-marker LOD

scores computed by PAP (Hasstedt 1994). The PAP õ .001), while failing to reject Mendelian transmission
(x2

(3) Å 6.29; P ú .05). The transmission probabilitiesLOD scores assumed the parameter estimates for the
inferred two-locus genetic model for BMI and were com- were estimated as t1 Å .911 { .059, t2 Å .411 { .132,

and t3 Å .000.puted for recombination fractions of 0% and 10%, for
each obesity locus and each marker. In addition, we No evidence for a third locus determining BMI was

obtained (x2
(3) Å 0.64; P ú .05). The two-locus recessiveused MAPMAKER/SIBS (Kruglyak and Lander 1995)

to compute multipoint LOD scores, using maximum- model accounted for 68% of the variance in BMI. The
remaining 32% of the variance was attributed to ran-likelihood variance estimation and multipoint Z scores,

using a nonparametric quantitative-trait-loci (QTL) dom environmental effects specific to each individual;
we did not include in the model an environmental effectmethod; this analysis required splitting the pedigrees

into nuclear families. shared by siblings, since no siblings in this adult sample
currently cohabit. The maximum-likelihood estimates,We used likelihood analysis and the admixture model

(Smith 1961; Ott 1983) to estimate the proportion of with standard errors, for the two-locus recessive model
for standardized BMI were qM Å .423 { .030, qE Å .284linked pedigrees and to compute the heterogeneity LOD

score. The heterogeneity LOD score equaled LODa { .008, tM Å 2.20 { 0.23, tE Å 4.47 { 0.18, and h2

Å .000, where subscripts ‘‘M’’ and ‘‘E’’ designate theÅ Silog10[aLi(c) / (1 0 a)], where a represents the pro-
portion of linked pedigrees and Li(c) represents the anti- moderate-obesity and the extreme-obesity loci, respec-

tively. A heritability estimate of 33% for the one-locuslog of the pseudomultipoint LOD score for pedigree i,
at location c, and where the summation is over all pedi- model agreed with other analyses of BMI; the addition

of a second locus accounted for that genetic variationgrees.
and reduced the estimate to .000.

Table 1 shows that the homozygosity of the inferredResults
genes, for moderate obesity and for extreme obesity,
resulted in a mean BMI of 32 kg/m2 and of 39 kg/m2,Evidence supporting major-locus inheritance of obe-

sity was derived first from the rejection of the hypothesis respectively. Our assumption of additive displacement
across loci required that, over the normal genotype, theof no major locus (x2

(3) Å 101.37; P õ .0001) and then
from the rejection of environmental nontransmission increase in BMI owing to the homozygosity of both

genes equal the sum of the increases owing to the homo-(x2
(3) Å 16.17; P Å .001), while Mendelian transmission

failed to be rejected (x2
(3) Å 5.74; P ú .05). This last x2 zygosity of each gene alone. Although this assumption
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Table 1

Number, Means, and Percentages, by Gender and Genotype Class, for the Complete Sample

MENa WOMENa TOTALa

VARIABLE N M E N M E N M E

No. 206 53 16 240 68 24 446 121 40
Mean age (years) 46 49 46 48 48 44 47 49 45
Mean BMI (kg/m2) 25 31*** 39*** 24 33*** 39*** 25 32*** 39***
With NIDDM (%) 21 41* 44 25 46** 45 23 44*** 44
Mean age at onset of NIDDM (years) 53 50 47 52 49 44 53 50 45
With NIDDM, age § 50 years (%) 43 71* 91 49 77* 94 46 75** 93

a Data were estimated by use of GPEs; the BMI was adjusted to a male of age 30 years. N Å two-locus genotypes that are not homozygous
for either obesity locus; M Å two-locus genotypes that are homozygous at the moderate-obesity locus but not at the extreme-obesity locus;
and E Å two-locus genotypes that are homozygous at the extreme-obesity locus but not at the moderate-obesity locus. The two-locus genotype
that is homozygous at both loci is not included, because of small numbers.

* P õ .01; ** P õ .001; *** P õ .0001. All P values were determined by a one-tail t-test compared with the previous genotype group,
without correction for multiple testing.

was not tested, the parameter estimates from the two- showed no symptoms of NIDDM; and the remaining
38 pedigree members were either not studied or the diag-locus model predicted that nine individuals with a mean

BMI of 47 kg/m2 would be homozygous for both genes, nosis was equivocal. Table 1 shows that both inferred
obesity genes double the prevalence of NIDDM. Al-which is in close agreement with the nine individuals

with a mean BMI of 48 kg/m2, estimated from the data though not significant, age at onset was earlier in those
members homozygous for the moderate-obesity gene(results not shown). Figure 1 compares the four inferred

distributions to the sample distribution. and earlier still in those members homozygous for the
extreme-obesity gene. When the sample was restrictedA total of 162 members of these pedigrees were diag-

nosed with NIDDM; another 416 pedigree members to the 244 pedigree members of age §50 years, a higher

Figure 1 Distribution of BMI in the sample (bars) and for the inferred genetic model (four smooth curves)
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Table 2

Mean Insulin and Glucose Levels, by Gender and Genotype Class, for Pedigree Members without NIDDM

MEAN, FORa

NO. OF Men Women Total
MEMBERS

VARIABLE TESTED N M E N M E N M E

Insulin level (mU/ml):
Fasting 383 13 21*** 36** 13 19**** 23 13 20**** 28**
1-h 366 68 116*** 213* 67 104*** 129 68 110**** 159**

Glucose level (mg/ml):
Fasting 404 88 88 89 88 89 92 88 88 91
1-h 390 125 144** 147 126 139* 147 125 142** 147
2-h 391 88 100* 99 88 96* 99 88 98** 99

a Means were estimated by use of GPEs on natural logarithm–transformed measurements, adjusted to a male of age 30 years, then transformed
to the original scale by use of the lognormal mean. N Å two-locus genotypes that are not homozygous for either obesity locus; M Å two-locus
genotypes that are homozygous at the moderate-obesity locus but not at the extreme-obesity locus; and E Å two-locus genotypes that are
homozygous at the extreme-obesity locus but not at the moderate-obesity locus. The genotype that is homozygous at both loci is not included,
because of small numbers.

* P õ .05; ** P õ .01; *** P õ .001; **** P õ .0001. All P values were determined by a one-tail t-test compared with the previous genotype
group, by use of natural logarithm–transformed measurements, without correction for multiple testing.

prevalence of NIDDM was estimated for those members sole moderate-obesity gene and almost excluded the
other two candidate genes. We cannot rule out one ofhomozygous for the extreme-obesity gene than for those

members homozygous for the moderate-obesity gene. the candidate genes being one of multiple extreme- or
moderate-obesity genes, but the strongest evidence, aTable 2 shows that both inferred obesity genes in-

crease fasting and 1-h insulin levels and 1-h and 2-h heterogeneity LOD score of 1.09 (table 5) for ASP and
for the moderate-obesity locus, provided little support.glucose levels but not fasting glucose levels. The effect

of the genes on insulin levels is larger than the effect on Likewise the sib-pair analysis provided little support for
a role for any of the candidate genes in the determinationglucose levels.

Table 3 lists the obesity candidate genes, and table 4 of BMI (table 5).
lists the corresponding genetic markers used in the link-
age analysis. The markers had 6–15 alleles, with an Discussion
average of 10 alleles, and heterozygosity was within the
range of 55%–88%, with an average of 76%. LOD The inference, in this study, of recessive inheritance

of obesity agrees with other segregation analyses (Pricescores ranging from 016.16 to 04.29 (table 5) excluded
all nine candidate genes as the sole extreme-obesity gene, et al. 1990; Moll et al. 1991; Ness et al. 1991; Borecki

et al. 1993; Comuzzie et al. 1995). Nevertheless, one orin these pedigrees; LOD scores ranging from 04.15 to
01.91 (table 5) excluded seven candidate genes as the both genes inferred herein may be different from those

Table 3

Designations and Locations of the Obesity Candidate Genes/Regions Tested for Linkage

Candidate Gene/Region Symbol Location Reference

Leptin receptor OBR/DB 1p31-1pter Tartaglia et al. 1995
Tumor necrosis factor a TNFA 6p21.3 Nedwin et al. 1985
Leptin OB 7q31.3 Zhang et al. 1994
Lipoprotein lipase LPL 8p22 Sparkes et al. 1987
b3-adrenergic receptor ADRB3 8p11-12 Bruskiewich et al. 1996
Prader-Willi PWS 15q11-13 Magenis et al. 1990
Hepatic lipase LIPC 15q21 Sparkes et al. 1987
Glycogen synthase GYS 19q13.3 Lehto et al. 1993
Mouse agouti homologue ASP 20q11.2 Kwon et al. 1994

/ 9a35$$se18 09-02-97 18:35:15 ajhga UC-AJHG



673Hasstedt et al.: Recessive Inheritance of Obesity

Table 4 tween the two possibilities—that is, the inferred genes
produce obesity and NIDDM pleiotropically, or the in-

Genetic Markers Used to Test Linkage to the Obesity Candidate ferred genes produce obesity only, which increases theGenes/Regions
risk of NIDDM in susceptible individuals. The increased
prevalence of NIDDM among individuals homozygousCandidate Gene/

Region Genetic Marker(s) for the putative genes is consistent with either possibil-
ity. The hyperinsulinemia observed in nondiabetic ho-

OBR/DB D1S193, D1S168, D1S161, D1S162, D1S200 mozygotes may predict the development of NIDDM
TNFA D6S299, TNFA, D6S291

consistent with pleiotropy but, instead, is probably sim-OB D7S466, D7S514, D7S530
ply a physiological correlate of obesity (FerranniniLPL LPL

ADRB3 D8S87, FGFR1, D8S532 1995); fasting and 1-h insulin levels, after adjustment
PWS D15S128, D15S97, D15S165 for BMI, showed no elevation in homozygotes (data not
LIPC LIPC shown). Therefore, the recessive inheritance inferred for
GYS GYS

high fasting insulin levels, adjusted for BMI, in nondia-ASP D20S45, D20S106, SRC
betic members of a subset of these pedigrees (Schu-
macher et al. 1992) undoubtedly is not due to either
obesity gene inferred herein.

inferred in previous studies. First, a mean BMI of 39 The question of whether the putative obesity genes
kg/m2 for the extreme-obesity locus exceeds previous produce both NIDDM and obesity pleiotropically or
estimates of 32–35 kg/m2 (Price et al. 1990; Moll et al. whether they produce obesity alone can be better an-
1991), although the estimate of 32 kg/m2 for the less swered when the genes have been identified. Despite the
well-supported moderate-obesity locus does not. Sec- availability of parameter estimates to test for linkage to
ond, some studies failed to infer recessive inheritance the candidate genes, using a genetic model, we also used
without the inclusion of genotype-specific gender and/ a nonparametric method that does not require the speci-
or age effects (Tiret et al. 1992; Borecki et al. 1993; fication of a genetic model, and we allowed for locus
Comuzzie et al. 1995), which we did not find necessary. heterogeneity when using the parametric method; our
Third, we inferred genes for obesity in adulthood, but conclusion, from the results of the segregation analysis,
other samples included children (Price et al. 1990; Moll that obesity results from two major loci did not modify
et al. 1991; Ness et al. 1991; Borecki et al. 1993): child- our expectation that multiple loci with different modes
hood obesity does not necessarily predict obesity in of inheritance underlie obesity; the consistent inference,
adulthood (Gasser et al. 1995). Finally, the loci inferred by use of segregation analysis, of recessive inheritance
herein may produce obesity and NIDDM pleiotropi- may result partially from recent increases in the preva-
cally, which is less likely in the other samples, which lence of obesity (Price et al. 1994). Unfortunately, none
were not ascertained through NIDDM cases. of the methods of linkage analysis implicated any of the

tested obesity candidate genes, although we cannot ruleUnfortunately, this analysis cannot distinguish be-

Table 5

LOD and Z Scores for Obesity Candidate Genes/Regions

MODERATE-OBESITY GENEa EXTREME-OBESITY GENEa SIB PAIRb

CANDIDATE GENE/
REGION LOD Score a LODa LOD Score a LODa LOD Score Z Score

OBR/DB 01.92 .25 .30 013.20 .00 .00 .00 0.48
TNFA 02.24 .25 .43 09.63 .00 .00 .04 1.35
OB 03.43 .00 .00 014.21 .00 .00 .01 .06
LPL 04.15 .00 .00 06.65 .00 .00 .00 0.27
ADRB3 03.73 .12 .05 016.16 .00 .00 .05 1.23
PWS 03.89 .08 .08 07.91 .35 .50 .00 0.27
LIPC 03.47 .00 .00 04.29 .22 .22 .00 0.30
GYS 03.98 .00 .00 08.43 .00 .00 .04 .87
ASP 01.91 .35 1.09 012.85 .00 .00 .12 .78

NOTE.—The LOD and Z scores given are for tight linkage to the candidate gene when among the markers or, otherwise, for the highest
LOD score or Z score between the two outside markers.

a a is the estimate of the proportion of linked pedigrees and LODa is the LOD score when heterogeneity is assumed.
b The maximum-likelihood variance LOD score and the nonparametric QTL Z score are given (Kruglyak et al. 1995).
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out a rare defect, in one of the genes, underlying the Homozygous lipoprotein lipase deficiency causes mas-
sive accumulation of chylomicrons in plasma and a cor-obesity in only one or two of the pedigrees.

Other investigators have attempted to attribute varia- responding increase of plasma triglyceride concentra-
tion; patients present in childhood with abdominal paintion in obesity, in NIDDM, or in related traits to genetic

variation in the obesity candidate genes studied here, and pancreatitis (Brunzell 1995). Heterozygotes may
have moderate lipid abnormalities (Wilson et al. 1990;through linkage or association studies or through muta-

tion screening. Of the obesity candidate genes consid- Miesenböck et al. 1993; Tenkanen et al. 1994). Like-
wise, other polymorphisms in LPL associate moreered here, OB is the most likely to be involved in human

obesity, with a LOD score of 3.1 for linkage to extremity strongly with lipid levels than with obesity or with
NIDDM (Ahn et al. 1993; Elbein et al. 1994b; Jemaaskinfold in Mexican-Americans (Duggirala et al. 1996),

with suggestive evidence of linkage to obesity in the et al. 1995; Ukkola et al. 1995), and linkage to fat mass
(Comuzzie et al. 1995) and NIDDM (Elbein et al. 1995;French (Clement et al. 1996), and with weak evidence

of linkage to obesity in a United States sample (Reed et Stern et al. 1996) has been rejected, although association
with NIDDM has been reported (Wang et al. 1996).al. 1996), although linkage in Pima Indians was rejected

(Norman et al. 1996). Nevertheless, a causative OB mu- Homozygous hepatic lipase deficiency is much rarer
than homozygous lipoprotein lipase deficiency. Hetero-tation has yet to be found in any obese subject (Consid-

ine et al. 1996b; Maffei et al. 1996; Niki et al. 1996), zygotes have variable phenotypes, without a specific
lipid abnormality (Hegele et al. 1993).suggesting that if OB mutations exist in humans, then

they are rare. In addition, NIDDM does not show link- Among the other obesity candidate genes, linkage of
TNFA to the percentage of body fat in Pima Indians isage to OB (Stirling et al. 1995), even in the sample

showing linkage to extremity skinfold (Duggirala et al. weakly supported (Norman et al. 1995), but no variabil-
ity in the TNFA promoter has been found in NIDDM1996).

After OB, ADRB3 shows the strongest evidence of patients (Hamann et al. 1995), and we did not find
linkage to NIDDM (Elbein et al. 1995). No evidence ofinvolvement in human obesity. The Trp64Arg mutation

associates with obesity (Kadowaki et al. 1995; Kuraba- linkage to obesity, to NIDDM, or to related traits has
been found for OBR/DB (Considine et al. 1996a; Dug-yashi et al. 1996), an increased capacity to gain weight

(Clément et al. 1995; Fujisawa et al. 1996), low resting girala et al. 1996; Norman et al. 1996), PWS (Reed et
al. 1995), or ASP (Xu et al. 1995; Duggirala et al. 1996;metabolic rates (Walston et al. 1995), abdominal obesity

(Widén et al. 1995), and susceptibility to NIDDM (Fuji- Norman et al. 1996).
Whether any of these nine candidate genes play a rolesawa et al. 1996). Despite these associations, Candelore

et al. (1996) found that ADRB3 with the Trp64Arg mu- in human obesity or in NIDDM is still an open question.
Defects in OB may contribute to obesity in some popula-tation is pharmacologically and functionally indistin-

guishable from wild-type ADRB3. The effects of the tions, but that conclusion awaits confirmation. ADRB3
may contribute to variation in obesity, but the effectTrp64Arg mutation are possibly more subtle than the

tested effects, or the Trp64Arg mutation is not causative appears to be small. This study rules out a major role
in obesity in northern Europeans for either OB orbut is in linkage disequilibrium with a causative mutation.

On the other hand, Li et al. (1996) found no evidence of ADRB3 or for any of the other candidate genes that we
tested. We also found no evidence, in these pedigrees,association with obesity for the Trp64Arg mutation, in

Sweden, and we found no evidence of association with of linkage of NIDDM to any of the candidate genes.
obesity for the Trp64Arg mutation and no evidence of
linkage of ADRB3 to obesity or to NIDDM, in the pedi-
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